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Membrane filters

@ Membrane filters: Thin layers of porous media, through which “feed
solution”, carrying particles, passes. Designed to remove particles of a

certain size range from the feed.
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Problem presented by W.L. Gore & Associates

@ We have a porous material that is filled with a liquid solution
containing solute molecules (can be multiple species) with known
concentration. As the solvent evaporates solute
molecules deposit on the internal pore walls
within the material.

@ Develop a mathematical model that will predict
the mass distribution of solutes inside a porous
medium after the solvent has evaporated.

Evaporation specified by
either temperature or rate

@ How does the mass distribution change f
upon subsequent cycles of wetting?

@ How do the porosity and pore size
distribution, the initial concentration
of solute species and evaporation rate
affect the solute distribution?

Membrane
Fibers of porous surface

material
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Extension of MPI| 2020 model for particle deposition
e Coupled eqgns for particle conc C(z, t) and pore radius R(z, t).
o Evolution of pore radius, initial condition R(z,0) = R%(z),
OR

g —XxQuw(C), 0<z<h(t).

e Flat evaporation interface, z = h(t)
(neglect curved meniscus)

h - - eyele
dh _ E. 2

Rzt

E o >
i Y
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o Reduced reaction diffusion equation, initial condition C(z,0) = C°(2),
0 0 ocC
CR*) =D—-- | R —2RQu/(C <z<h(t
5 (R =D (R9Z) “2RQL(C), 0=z Al
oC dh oC
DE—{_EC_O atZ—h, DE_O at z = 0.
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Extension of MPI 2020 model

@ Change of variables for fixed computational domain

A A

C(Yv t): C(Zv t)v R(Yv t):R(Z, t),

where z = h(t)y with 0 <y < 1.
@ Explicit time-stepping finite-difference numerics in MATLAB.
Fixed-domain BVPon 0 <y < 1:
@ Change of radius eqn:

OR KW OR A
or Fy?y = —xQuw(C).
@ Reaction diffusion eqn:
O(CRY W A(CR?) D [ 40C
- — =—— | R°— | —2RQu(C),
ot h dy h? Oy dy Qu(C)
DoC A aC
—— 4+ HC= ty=1 — = ty =
h Dy + 0 aty , 3y at y
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Results: deposition from under-saturated fluid

C, <Csat C, < Csat
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Results: deposition from over-saturated fluid

cu > Csat Cu > Csat
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Results: pore radius/deposited particles

Uniform vs conical (slanted) pore

E=1,D=1,x=08A=1,Ce = 0.5, Cy = 0.45,

Runio - 017 Rcono =0.1 -+ O].(_y — 05)

Straight cylinder
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Results: deposition for repeated wetting/drying cycles

Three cycles:

E=1,D=1=08\=1,Cs =0.5,Co=0.45Ry =1

Deposition after three cycles

cycle1
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Macroscopic model

z

Evaporation

J I T O S S

/w
zZ = h(x)

wet region {25
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Governing equations

8(0(th) =V - (DV(¢c)) — f(¢,c), in Qf,
Aoo)|  _oleq)|  _ )| _,

ox |,o  Ox |y 0z |,

. DV (¢c) - n|,_py = — NEco b

4 Evaporation
o r % 3

dry region {24
/\z:/h(:v)
wet region (25
»
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Governing equations
@ Evolution of porosity ¢ due to particle deposition

oo
E - _f(d)a C)v

f(¢7 C) = d¢1/2(c - C*)a

c* = saturation concentration.

@ Evolution of the dry/wet interface z = h(x, t) due to evaporation
oh Eoph

E-—E((ﬁ,c,h), E(¢,c,h):’C+C or E=E.

o After scaling, the leading-order equation for particles for e = D/L < 1
—hy(6C)x + [~D(C)sx + F(, €)| h+ AEpc = 0.

o Effective evaporation rate: E = %fOL E(¢,c, h) dx.

For simulations, weset & =A=K =1,c* =0.1.
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Res u Its 12 Film thickness h 03 Particle concentration ¢
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Const. evaporation rate E=E;, Ey=0.1, D=1.
ICs: hg =1, ¢o=0.3(1+0.5cos(mx/L)), BCs: ¢y =0at x=0,L.
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Results
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Single pore toy model

1 z (zh,zh)

Ey

Figure: Problem sketch.
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Meniscus equations

Equation for the wall is given by:
f(z,t=0)=tan(B)z+ X .
Shape of the meniscus at the top and bottom is given by:

ht =z5 — (A +tan(B) z;) cot (a+ B) + Vrt? — x2,

h™ = —z, + (A +tan(B) z,) cot (o — B) — Vr=? — x2

)

respectively, where the radii of curvature for the menisci hE are

r¥ =xFcscla+ ) = (A + tan(B)z;; ) csc(a + B),

and the menisci touch the wall at points (ix,,t(t),zvt(t)) and
(£x,,(t), —z, (t)), respectively.
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Fluid non-dimensionalisation

We non-dimensionalised assuming that the pore is long and thin, and that

the velocity scale is given by the capillary terms. Our governing equations
are given by:

oX 0z’
Oz_iaj+827U+ 2827(]

520X OX2 07?2’
0— aP 0?wW 5282W

2z " axz 072’
with boundary conditions on the wall, X = £F(Z):

(BU,W)-A=0 and (5U, W)-t=0.

C. Breward, P. Broadbridge, L. Cummings, D Mathematical Problems in Industry (MPI) We

June 18, 2021 22/38



Fluid non-dimensionalisation

At the upper meniscus, Z = H™:

r
P=——,
R*(Zw)

and at the lower meniscus, Z = H™:
P = r —,
R=(Zw)

We impose evaporation at the interfaces by writing

oz,

— /(7L

where we define the dimensionless parameters i = uE /0o and W(Z) is
the cross-sectionally averaged velocity.
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Leading order problem

In the limit of small §, i.e. a long thin pore, the leading order behaviour of
the system is:

o U, oW
C9X  9Z’
oP

0="2x
o 0P W
9Z  9X2’

with boundary conditions on the wall (assuming the wall is stationary in
time) reducing to

U=0 and W=0atX==%F(2),
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Leading order problem
We can solve for the pressure,

r <Rr+ - Rr_) ((tanéw)z; + 1) o (tan(;(ﬂ)z+ 1) 2)

RT T (tan(ﬁ)zm_/ N 1> -2 B (tan(ﬁ)zx n 1) - 7

0 0

and we also find that the cross-sectionally averaged velocity, W, is related
to the pressure via

— 1
W(2) = —§PZF2.
This gives
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Leading order solution

We use our equation for evaporation at the interfaces to obtain an ODE
for the movement height of the menisci at the wall over time, given by

0ZF  — 4
7 = W(ZW) Fn

with appropriate initial conditions for the menisci height starting points.

C. Breward, P. Broadbridge, L. Cummings, D Mathematical Problems in Industry (MPI) We

June 18, 2021 26 /38



Leading order solution
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Figure: Movement of the menisci at the wall over time, for varying /3 .
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Homogenization model, main idea

spongy material, macroscale

fibrous material, microscale

@ Build equations on the microscale first.
@ Homogenize equations to build macroscopic laws

@ Large scale behavior should depend on integrated version of
microstructure as expressed by porosity- (and hence spatially-)
dependent parameters in macroscale equations parameters

References: Luckins et al. 2019: clean up of contaminant with interface

motion; Dalwadi et al. 2016: filtering with Darcy flow through
microstructure with growing obstacles.
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Microscale field equations

@ Incompressible Stokes flow

—Vp+pVii=0, 0=V-a.
@ Solute within fluid can diffuse and is carried around by flow

g§+v(ea) =V - (DVE).

@ Boundaries:

@ Solute particles can deposit on fibers in a solid layer (conservation of
mass + chemical potential/other formulations depending on underlying
physics. Assume circular cross-sections).

@ Evaporation front (conservation of mass for solute and fluid; stress
boundary condition).
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Microscale boundary conditions

© Solid deposition: front with radius R moves at speed R with unit
normal n.

» Various mechanisms encapsulated by general equations

oc¢
8~7

o¢

R=—1D%
V3 8~a

u= 71/1:;?", c— Esat 71/2D

where 11, 15, 3 are constants, relating flow to expansion of boundary
and concentration flux.

> Csat IS the saturation concentration (nonlinear generalizations of these
conditions are possible as in the MPI12020 report).

@ Evaporation front S moving at speed S with unit normal n
evaporation rate, E, assumed constant.
» Conservation of mass for solute and solvent
o¢ . %
—D?-FCE—O u-n—S=E.

» Balance stresses to obtain a dynamic boundary condition.
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Nondimensionalization

@ Devil in the details. Delay choices for now (probably E for velocity).
Goal is to have O(1) balance between R and c.
o Critical parameter is € = Ry/L, ratio of micro- to macro-scales.

o Field equations:

0=V-u, 0=-VP+eVu,
oc

am-+ V- (cu) = Pe”'V - (DVc).

@ Evaporation boundary:

ac

—— 4+ Xec =0, dynamic b.c.
on

u-n.—S=e,

@ Deposition boundary:
Be Cn c+e € - G R=c
u=fe— — = ) =c.
on ) an sat
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Homogenization and expected equations
@ Darcy-type equation relating u and P within fluid

U=—K(¢)VP.

@ K and D below come from solving a single “cell” problem (tensors if
the microstucture is not sufficiently symmetric).

@ ¢ is macroscopic porosity, related to obstacle growth by ¢dR/0t = C.
@ Compressible flow driven by deposition of material on fibers

R
V-U:avgt.

@ Advection-diffusion-reaction equation for concentration

oI =y (Dw)vc - S D(¢)V¢)) —(9)C,

resemblance to continuum subgroup equations.

@ Equation of motion for interface looks like microscale version with
coefficients related to homogenization procedure.
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Network model main idea

evaporation

node i
tube radius: ry,
length: Ly

(a) Top down view of
fibers of material, view
dark regions as pores,
which can be connected
laterally to others.

(b) Side profile of pore network model
structure. Nodes are at entrances/exits and
intersections of pores.
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Borrowing from a membrane filtration model

@ Gu, Kondic, and Cummings recently submitted “A Graphical
Representation of Membrane Filtration” which details how pressure
drives solution flow through a random network.

I . radius
@ Nodes are connected by capillaries with

< 1, allowing Darcy's
length

Law and Poiseuille’s equation to be used to determine the flow rate.

@ Solving a matrix equation gives instantaneous flow rates within the
network, and can track concentration of the impurity and subsequent
pore shrinkage.

@ Modifications: Evaporation empties capillaries, capillary forces provide
pressure to move solution around. Residue deposition again
determined by continuum model.
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Governing equations

o Darcy's law, capillary pressure:

4
7Tr,-j

qij = k,'jp,'j, k,‘j = 78,U/L,‘j7 Vi Z aqij = 0.
J

@ gj; is flow from node i into node j, p;; pressure difference across
nodes, kjj pore conductance, r;j and L;; pore radius & length.

@ Darcy’s law, capillary pressure:

_ ycost

pij = :
rij

@ -y is surface tension, 6 contact angle.
o Evaporation brings node exposed to the air down

dLij | —E; Node j exposed to air,
0 otherwise.
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Summary and conclusions

@ We considered multiple scales:

» Microscale (single pore)
@ Evaporation and deposition without capillary effects.
@ Evaporation and flow without deposition and considering capillary

effects.

» Macroscale:
@ Solve a general model without flow, for evaporation and deposition
@ Consider homogenization taking into account microscale and allowing

for fluid flow.
© Network model which is not a continuum, but takes into account global

capillary effects.
@ Models are able to partially answer questions posed by W.L. Gore &
Associates.

@ Future improvements include linking micro and macro scale models;
and considering the three effects of evaporation, deposition, and flow
and their interplay.
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Thank you!

Thank You!

Questions??
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