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Abstract. The report below describes the breadth of work done during the 2021 Mathematical Problems

in Industry workshop project provided by Resource Systems Group, Inc (RSG) investigating techniques to

ensure privacy in large-scale travel behavior datasets. In working with such large, publicly-funded data, the
importance and need of making actionable information available to the public and policymakers needs to

be balanced with the need to protect the privacy of individuals included within. During the workshop, we

investigated algorithms and theoretical guarantees in the Differential Privacy framework, and the subtleties
therein when applied to a complex data set. We report some preliminary results with extensions of DP

algorithms, such as the “Random Response” algorithm, to a setting with categorical variables and uneven

weighting (such as when dealing with vehicle makes and models). This extension introduces a parame-
ter which directly allows one to balance between privacy and utility of the data. Lastly, we investigate
some approaches to perturbation of trip start/end location data using the Laplace mechanism, and provide
recommendations given observations during the workshop as well as directions for future work.
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1. Background

1.1. Household Travel Studies. Household travel studies or surveys (HTS) are collections of detailed
travel data representing who is traveling, when they are traveling, where they are going and how they get
there [LDGE19]. A variety of questions may be answered based on the data from an HTS: How many car
trips does the average resident make on a typical week? What are the peak travel hours, and what are the
purposes of the trips taken during these hours? This data is used to inform investment and urban planning
decision around transportation infrastructure [McG18]. More specifically, it can be used for traffic light
scheduling, road redesign and other transportation optimization efforts [HG05]. For instance, a company
may consider expanding a road based on the frequency that a road is traveled to help with the traffic flow.
In recent years, the HTS data collection has became easier to obtain with the increasing population of people
with smartphones [NWB+14]. Previously, the primary collection process consisted of paper surveys, and has
now evolved to phone, online, and smartphone application surveys. With the expansion of the smartphone
applications, participants’ data can be collected in larger samples with a larger range of variants between
parameters [LDGE19]. The collection of this data is usually commissioned by public agencies who often
publish their results and collected data to the public. Examples of such transportation companies include
the Ohio Department of Transportation [VS15] and the Metropolitan Transportation Commission [mtc12].
Since this data often has to be published to the public due to the nature of government/taxpayer funding,
there is a major concern for the privacy of the participants [GBM15].

1.2. Data Privacy. The rise of privacy concerns in recent years has led to ever-developing policies that seek
to protect the digital users’ privacy [gov21, GV16] including HTS survey participants. In the most recent
years, data collection companies have to comply with the General Data Protection Regulations [Tea17],
California Consumer Privacy Act/California Privacy Rights Act [Buk19], and numerous other state and
county privacy regulations.

Implementing and maintaining privacy relating to individual’s data has been an ongoing challenge of the
past decade. Past privacy breaches attest to the challenging nature of achieving true privacy for digital data
which the public can access. An example of such incidents involves the streaming services company Netflix
[Dun15, McN11]. In this incident, the company held a contest to improve its recommendation algorithm.
Before making it publicly available, they cleansed the data by removing or encrypting personally identifying
information such as name or address. Later, experts showed how by comparing this data with other reference
data accessible to the public, the attackers can identify individuals in the data. This example tells us of the
importance of testing against potential privacy attacks and the need for advancing data privacy.

1.3. Summary of Report. In this report, we study a few methods studying anonymization and differential
privacy for the HTS data collected by RSG (the sponsor for the project) understanding this and similar data
sets need to be published with some assurances relating to privacy. These methods include perturbing and
aggregating the geographical data and applying generalized random response [Hol16] to the categorical data.
First, we provide an overview of the type of data that we work with. Then, we define the random response
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method and generalize it to best fit this data. Lastly, we discuss applying perturbation to the portion of
this data that involves locations. Throughout these procedures, we use principles from differential privacy
to measure our success at achieving data privacy in the following sections. We report that assessing the
efficiency of these methods in light of differential privacy requires further investigation.

2. Exploratory Data Analysis

This section shows the result of our exploratory data analysis and preprocessing of the data set as provided
– prior to exploring approaches to anonymization and differential privacy.

2.1. Data collection process. The data set in question, a household travel study (HTS) is intended to
collect granular information about travel habits to better inform

Data collection took place through three main methods, smartphone data, call center data, and online
data. Smartphone users downloaded an app that collected travel data for a continuous 7 day period. At the
end of each day, the app would collect addition information such as reasons for traveling and why a person
did not travel that day [LDGE19]. Those completing the survey through a call center or online only reported
a single day travel diary.

The HTS which was provided to us by RSG contained, in total, 16,152 participants. Since participants
filled in much of their data, there are places where the data is missing information. Out of the total
participants, 11,405 used the app and 4,747 used the call center on answered online. The various aspects of
this study summarized in table 1; aside from the “location” data set which has detailed GPS observations,
the other categories contain summary information such as dates/number of trips by household (“Day”),
socioeconomic information (“Household”) and vehicle information (“Vehicle”) among others. The multiple
tables contain sufficient information by “observation” (row in a table) to connect the various aspects of the
data to one another if needed.

Category Name Explanation Number of Observations
Day Basic information with dates of surveys, num-

ber of trips, and reasons.
84,562

Household Information on type of residence, renting or
owning status, income, and duration of time
at residence.

7,837

Location Latitude and longitude of travel destinations. 1,048,575
Person Demographic information and data collection

type (smartphone app on online/phone).
16,152

Trip More detailed information on trips taken
throughout each day.

240,449

Vehicle Information about vehicle type. 13,432

Table 1. An explanation of each category of data and the number of observations within
each category.

2.2. Removal of geographic outliers. Some trips venture or stay completely outside the Twin Cities
metro area, as evidenced by locations in the locations.csv file. These may have resulted, for instance,
when a participant flew to a different city and continued to track trips. They do not add much to the
understanding of the Twin Cities area, and they interfere with statistical summaries.

A Julia code was written to group each location datum by trip ID number, then find the extreme values
for longitude and latitude. A large box enclosing the metro area was drawn at latitudes (N44.1,N46.1) by
longitude (W91,W94.3). Any trip ID whose extreme values were outside of this box was noted in a file,
ending with 22,258 flagged trips. We note that the analysis was performed on locations that may have been
perturbed by up to 1 km – but we expect the number of “false positives” in flagging outliers as a result of
this were extremely small, if none at all.
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2.3. “Locations” data. Figure 1 visualizes one example of a trip trajectory (chosen arbitrarily from the
data). The direction of movement is indicated by arrows drawn. The figure shows that GPS data are
collected with relatively high frequency, such that identifying a specific route taken is possible. From a
preliminary standpoint, it is clear that this kind of information would be highly important to privatize –
but the process of creating realistic synthetic data at this fine scale, which still has some value, will be a
significant challenge.

While this fine-grained information about the routes taken in individual trips can be very valuable, it
poses great challenges from the perspective of privatization. A straightforward simplification – to only report
the start/end of a trip without reference to the specific route – also was reported in the “trips” dataset,
which we explore next.

Figure 1. An example of a trip trajectory, the direction is indicated by an arrow (which
are plotted at the midpoint of the interpolation between trip reference points).

2.4. “Trips” data. For HTS, we consider trips that individual people in each household makes as particu-
larly sensitive data, so understanding aspects of this component of the data important.

Figure 2 shows the histogram of how many trips are made by each person on each day that they were
part of the survey for. We see that most people on a typical day make very few trips, and there is a rapid
decay in the trip frequency when the number of trips increase. We make note of this as the first, of several
aggregate aspects of the overall data that may be valuable to account for if and when synthetically generated
data is used.

One aspect of the data reported in each row of this data is the trip start/destination coordinates. We
considered this distribution another element of note to preserve during the privatization process. In Figure
3 illustrate the spatial distribution of all trips in relative coordinates. The left panel shows a scatter plot
of all trips distributions, where we see that most trips are focused on a tight cluster which is the Twin
Cities region. The right panel visualizes the relative frequency of the same data distributed over the city.
It is difficult to identify relative importance in this side view; however, as the z-coordinate (height) is the
log-transformed frequency, it is clear the enormous majority of trips occur in the city center.

2.4.1. Ride-hailing trips. Trips coded specifically with mode_type=6 are designated as ride-hailing service
trips, such as those provided by Uber and Lyft. There are 1244 such trips in trips.csv. Histograms of
the endpoint locations of these trips (distributions of all trips per latitude, or per longitude) are shown in
Figure 4. The strong single-mode distribution suggests that approximately 1000 of the 1244 ride-hailing
trips have Minneapolis-Saint Paul International Airport (MSP airport) as one of the trip endpoints, based
on a manual cross-reference against the airport’s coordinates.

To further explore the nature of ridesharing component of the data, Figure 5 (right panel) illustrates the
distribution of departure times, by time of day. The lowest rates for these trips occur between roughly 8am
to 12 noon, at an amount roughly 3-5 times lower than the rest of the day. Figure 5 (left panel) illustrates
associated trip durations for rideshare trips, which appear to have a mean of 15-20 minutes, and the large
majority of trips lasting less than 60 minuets.
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Histogram of trips_by_person_day$num_trips
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Figure 2. Histogram illustrating the number of trips taken by one person in a day. The
large majority of people take fewer than 10 trips.

Figure 3. Visualization of the destination distributions

3. Differential Privacy

3.1. The basics of DP and examples. Our broad goal is to investigate approaches, and feasibility of,
applying differential privacy algorithms to minimize a while still preserving the usefulness of the data. A
differential privacy (DP) framework provides a way of ensuring such privacy with an underlying mathe-
matical framework with some guarantees [Kur21]. Differential privacy is often implemented by of random
perturbation of data, for the purposes of individual privatization, in such a way such that numerical bounds
on statistics of the data information can be obtained [DR14].
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Figure 4. Destination locations (longitude and latitude) for all 1244 ride-hailing service
trips. The vertical lines show the location of the MSP airport.

Figure 5. Departure times-of-day and trip durations for all 1244 ride-hailing service trips.

Differential privacy is beyond a hypothetical concern. Major companies, such as Netflix, found out the
hard way that simply anonymizing data by obscuring strictly sensitive fields is not enough to maintain the
privacy of study subjects [DR14, Dun15, McN11]. What’s more, a first attempt at a “fix” – such as releasing
seemingly harmless data such as the mean of a data set – is also not truly private, and is certainly not
differentially private.

For example, suppose a teacher has a class of 17 students and tells them that the mean on their last test
was a 80%. In the extreme, a motivated agent interested in knowing an individual student’s score could
take this mean, and the remaining 16 of the 17 students their individual scores on the test and use this
information to determine the score of the last individual who wished to remain anonymous. In isolation, this
example may seem a little absurd. However, typical approaches to de-anonymizing data work along similar
principles – starting with an “anonymized” data set, then combining with information from other data
sets and de-anonymize information about individuals (or close enough the individual level for all practical
purposes).

3.2. Formal Definition. We now more formally define differential privacy. Differential privacy is used to
answer numeric queries which we understand as functions from data bases to real numbers [DR14]. For
example, a numeric query could return a sum or mean. We letM be a mechanism, an algorithm that takes
a data set as an input and returns some output [DR14]. We call two data sets D1 and D2 “neighboring” if
they differ by a single element. Then, we say that a randomized algorithm M is ε-differentially private if,
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for two neighboring data sets D1 and D2, and all subsets S of the image of the function M,

(1) exp(−ε) ≤ Pr[M(D1) ∈ S]

Pr[M(D2) ∈ S]
≤ exp(ε).

Differential privacy is also often written as

(2) Pr[M(D1) ∈ S] ≤ exp(ε) · Pr[M(D2) ∈ S],

understanding that the definition will be “symmetric” when switching the roles of D1 and D2.
If we think of R ⊂ S as being the numerical result of a query, thenM is ε-DP if the probability ofM(D1)

producing the result R is at most exp(ε) more likely than the probability of M(D2) producing the result of
R [Kur21]. The hope is for ε to be small, thus ensuring more privacy for the participants [Kur21]. If ε is
small, then there is only a very small chance that the differing data sets D1 and D2 will produce a different
result, and thus the difference between including and excluding an individual’s information in the data is
small, meaning they are protected [Kur21].

3.3. Random Response Algorithm. We will now explore one of the classic ways of implementing DP,
called “Random Response.” Suppose participants are asked a question that could revel information about
their health such as “Do you eat peanuts?” To protect the privacy of everyone, the answers to this question
can be recorded in the following way. A participant flips a coin. If the coin shows heads, they answer
truthfully. If the coin shows tails, the participant flips the coin again. Now if it shows heads, they answer
“yes” regardless of their true answer and if the coin shows tails, they answer “no.” Intuitively, we understand
the data resulting from this process is “private” because of a degree of “plausible deniability” of any outcome.
We will see that applying this algorithm on a data set such as this is differentially private [DR14].

We will begin by fixing the answer of a respondent. Suppose their truthful answer to “Do you eat peanuts?”
is “yes.” However, using the random response algorithm, they will not always answer yes. Working through
the space of possibilities, there is a 3/4 chance that the randomized response is “yes”: there is a 1 in chance
they tell the truth based on getting a tails in the first coin flip (choosing to give a randomized response),
and a 1/4 chance they say “yes” based on first getting a tails and then flipping a heads. Similarly, there is a
1/4 chance that the respondent answers “yes” even though the truth is “no,” as the result of flipping a tails
(randomized response) getting tails then heads (the random response is “yes”). Using the definition of DP ,
we write

(3)
Pr[R = “yes” | Truth = “yes”]

Pr[R = “yes” | Truth = “no”]
=

3/4

1/4
= 3 ≤ eε

where R represents the response. The case when the true response is “no” follows the same logic. From
here, we see that ε = log(3). So the coin flip algorithm is log(3)-differentially private.

3.3.1. Varying the truth reporting rate in Random Response. Continuing the example in this section, suppose
we wanted to determine the proportion of the population that eats peanuts. If this mechanism is applied for
every individual’s response, then we can compute an empirical estimate, simply by reporting the number of
“yes” answers. If the true population proportion is p, and working with the knowledge that the data was
modified by Random Response, the proportion of people that report that they eat peanuts is 3

4p+ 1
4 (1−p) =

1
4 + 1

2p. Thus, if our observed fraction of “yes” responses is p′, our estimate of the true proportion is obtained

by solving the equation p′ = 1
4 + 1

2p for p. Note that we multiplied our estimate for p′ by 2 in order to
construct our estimate of the true proportion. This governs how closely we should estimate p′ in order to
truly estimate p, in analogy to a sensitivity parameter. For example, if we want an estimate for p that is
correct to within ±α (with high probability), we need an estimate of p′ that is correct to within ± 1

2α (with
the same probability).

There is a tradeoff between this scaling parameter and the privacy guarantee. Suppose we work with
a weighted coin with probability θ that coin lands heads (and the respondent reports truthfully), and the
random response is still based on a random coin flip. Repeating the calculation from above,

(4)
Pr[R = “yes” | Truth = “yes”]

Pr[R = “yes” | Truth = “no”]
=
θ + (1− θ) 1

2

(1− θ) 1
2

=
1 + θ

1− θ
.

so that controlling the random response rate with probability θ gives a log
(

1+θ
1−θ

)
-differentially private

algorithm. We see that for θ = 1/2, we have the same log(3) differential privacy. When θ = 0, every response
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is replaced with a random response, and the bound is log(1) = 0. This is an optimal value for differential
privacy, but clearly the data set has no usefulness anymore. In the opposite limit θ → 1, vanishingly few
responses are randomized, but the differential privacy bound grows to infinity, providing no guarantees for
the algorithm applied to the data set.

3.3.2. Tradeoff of privacy and utility from the perspective of measuring a population proportion. Let pt
represent the fraction of responses that end up reporting the truth; whether they decide to report the
truth or report a randomized response. For example, pt = 3/4 when a fair coin is used in both stages of
Random Response (RR). An important question is what and how the population proportion is measured
after the RR algorithm is applied to the data.

If the true population proportion of “yes” responses is p, then using Bayes’ rule, we expect to see a

(5) p̂ = ptp+ (1− pt)(1− p)
ratio of “yes” responses in our sample. We would like to know how close p̂ is to the true population proportion
p. Solving for p, we get that our estimate of the true proportion is

(6)
p̂+ pt − 1

2pt − 1
.

We can think of 1
2pt−1 as a “scale parameter” in analogy to the scale parameter for the Laplace mechanism

discussed in the following section. As pt approaches 1, all responses are reported truthfully; the “scale
parameter” 1

2pt−1 approaches 1, the estimate of the proportion goes to p̂ (the measured response proportion),

and the privacy parameter goes to ∞. As pt approaches 1/2, the “scale parameter” approaches ∞, while
the privacy parameter goes to 0.

3.4. The Laplace Mechanism. One of the most common ways to add noise to real-valued data (in contrast
with binary responses) from the perspective of differential privacy is through what is called the “Laplace
mechanism.” This method is appealing because it can be demonstrated to preserve ε-differential privacy
in a predictable fashion. We first define the Laplace Distribution, a distribution centered at 0 with scale
parameter b > 0 and the probability density function

(7) Lap(x|b) =
1

2b
exp

(
−|x|
b

)
.

The Laplace mechanism computes the query f , and perturbs using noise from the Laplace distribution
[DR14]. Given a function f , the Laplace Mechanism is

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yk)

where the Yi are random variables from Lap(x|∆f/ε) [DR14].

3.5. Is DP useful for our data? In Section 3.4, we see that the result of the Laplace Mechanism is
to randomize the answer to a query, which could be a mean, a maximum, or even the entire database
itself. When ε is small, differential privacy algorithms produce perturbed data that protects the privacy of
the individuals of the study. For example, releasing a mean test score that has gone through the Laplace
Mechanism would prevent 16 students from figuring out the score of the last student. However, in the
strict sense, applying differential privacy in the does not return a perturbed and private data set; rather it
returns perturbed means, maximums, etc. In Section 4.1, we look at one possible way that the Randomized
Response algorithm could be applied to individual categories in the data set to make the overall data set
private. There are likely ways to use modified approaches to differential privacy to produce a private data
set, but there are also other spatially-based perturbation methods that we explore in Section 5.

4. Application of Random Response methods on categorical data

4.1. Who drives that Lotus? The provided data set offers interesting information on the types of vehicles
for each household in the survey. Some details are very recognizable, for example the vehicle make and fuel
type. However, some features are harder to identify, such as year and specific model.

It’s not a surprise to see that vehicle data has a direct impact on city planning. As an example, the rise
of electric vehicles demands increasing infrastructure (e.g. charging stations) to support them [Glo21]. More
generally, knowing the properties of vehicles can inform expectations about road use, stress, etc.
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While it is important to have data about the types of cars in a particular area, knowing the number,
make, and model of vehicles driven by members of a particular household can also offer insight into sensitive
information about the household’s members. For example, if it is known that a household member drives
an expensive vehicle, such as a Lotus, a Tesla, or a Hummer, then someone with access to this data can
speculate as to the household income and other sensitive information. If a household has more than two
vehicles, then one can speculate that there are more than three licensed drivers in a household. Driving a
minivan can signal that there are children in a household. All of this information can contribute to data
revealing the identity of members of a household. For this reason, we chose to investigate methods of making
vehicle data private. Here we explore extensions of the basic differential privacy algorithms while considering
attempting to preserve useful aspects of the data set; such as proportions of car types.

In this data, respondents were asked to provide the year, make, and model of each vehicle in their
household using pull-down menus. For vehicles built prior to 1980, respondents were instructed to answer
“1980 or before.”

Figure 6. Age of the Household’s Cars in the Greater Minnesota Community.

Figure 7. Fuel Types of the Household’s Cars in the Greater Minnesota Community.
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Figure 8. Distributions of vehicle makes before and after implementation of coin flip algorithm

4.1.1. Data Cleaning. Data cleaning and processing was done in several ways to extend usefulness and avoid
the need to throw away data where reasonable imputation could be done. We manually examined data
entries where the fuel type was missing but the vehicle name was there and imputed correct data on what
fuel type that vehicle is.

Aside from this, data missingness and non-uniformity was an issue throughout this data. For example,
some car names only consist of a year, are missing the model, or have spelling errors or non-uniform naming.
For example, some people called their vehicle a “Chevy” while other people wrote “Chevrolet.” We handled
this and similar algorithms using a basic text reassignment, though we discovered the need for additional
data cleaning while examining the relationship between the original and perturbed data after performing
the reassignment algorithm.

4.1.2. Random Replacement applied to car types. From Section 3, we know the Random Replacement (RR)
algorithm is differentially private. In this section we will apply this method to the vehicle categories to try
to increase the privacy of the users, while keeping the integrity of the vehicle fuel type (i.e. keep the same
amount of electric vehicles, vs gas, diesel and hybrid fuel types). Note that because we are maintaining the
integrity of the fuel types (i.e. a person with an electric car will still report that they drive some sort of
electric car), the overall data set, by definition, might not be fully differentially private.

We first create subcategories of the vehicle models based on the fuel types gas, diesel, hybrid, and electric.
Refer to Figure 7 for the current distribution of vehicles based on fuel types. Each fuel subcategory is filled
with the already existing vehicles, taking year, make, and model as as a single unit (for example, 2011 Subaru
Outback is an element of the gas subcategory). For each entry, a coin will be flipped. If the coin lands on
heads, the truthful make and model remains. If the coin lands on tails, a randomly selected vehicle make
and model would be selected from the same subcategory as the original.

Perturbing the data within the subcategories based on fuel ensures that the ratio of gas, diesel, hybrid,
and electric cars is preserved. However, more specific details such as whether a person owns a gas consuming
motorcycle or a gas consuming truck will be lost. Different subcategories would be required to preserve such
data. In Figure 8, the distribution of vehicle makes in the original data and the perturbed data are displayed.

Of the 13,431 vehicles observed in the data, 6772 vehicle names (50.42% of total) remained the same
using RR. The remaining 6659 had their vehicle names randomly reassigned from the set of all vehicle names
with the same fuel type. After performing reassignment, a total of 6788 (50.54% of total) vehicle names
were the same after reassignment as they were in the original data set. Thus only 16 vehicles total–9 gas, 4
hybrid, and 3 electric–were randomly assigned to the same vehicle that the household actually owns. Figure
9 illustrates this comparison of the distribution of vehicles based on year in the original and perturbed data.
From a glance, the overall distribution is fairly similar, which is useful to a city if they are interested in the
age of cars driven in the city.

4.1.3. Revisiting Random Response with multiple categories. Intuitively, we suspect that this modified Ran-
dom Response method should be differentially private with respect to vehicle names. However, it will be
useful to follow through with a calculation to produce a relevant differential privacy style bound. Finding
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Figure 9. A comparison between vehicle year distribution in the original data versus the
perturbed data.

a formula for the associated value ε in this scenario is an extension of the proof in section 3.3 when the
response was binary (“yes” or “no”).

In the modified RR algorithm, the reporting of a person’s vehicle is based on a coin flip, where a “heads”
means the true car is reported, and a “tails” means that the reported car is randomly selected from within
the same subcategory of vehicles. We will look at the differential privacy within a fixed fuel type subcategory.
We begin by fixing a respondent who drives car type c. We want to find the probability that they report
car c as their vehicle given that the truth is car c, and we look at the probability that they report that they
drive car c given that they drive a different car c′:

(8)
Pr[R = c| Truth = c]

Pr[R = c| Truth = c′]
.

We must run through all possible cars that a person could and could not drive, so we now consider cj
and c′i as the car that someone owns and the car that someone does not own respectively. For example, if
cj is a 2011 Subaru Outback, then we look at the ratio when c′ is a 2018 Toyota Corolla, when c′ is a 2017
Honda CR-V, etc. We then must also consider the case when cj is the 2018 Toyota Corolla compared to ci
being a 2011 Subaru Outback, 2017 Honda CR-V, and so on. This ratio takes the worst case scenario value;
i.e. the value that yields the largest ε. We calculate the probabilities in the following way. The probability
that the respondent reports cj given that the truth is cj is given by the sum that the probability that a
heads is flipped and the probability of car cj being selected from the total vehicles in the sub category. The
probability that the respondent reports cj given that the truth is c′i is given by the probability that they flip
a tails and select the other car type. To take into account that there could be multiple of the same car cj ,
we’ll let nj be the total number of cj , n

′
i be the total number of car type c′i, and t the total number of cars

in the subcategory. Refer to Figure 10 for a visual of this scenario. From here we can find the probabilities
and take the worst case scenario - the maximum - of the ratios

(9) max
j

{
Pr[R = cj | Truth = cj ]

Pr[R = cj | Truth = c′i]

}
= max

j

{ 1
2 +

nj

2t
1
2 ·

nj

t

}
= max

j

{
t+ nj
nj

}
=
t+ n

n

where n, the value that maximizes the ratio, is the minimum of the of owned vehicles c over all nj . From
here, we conclude that this modified RR algorithm is differentially private with

(10) ε = log

(
t+ n

n

)
.
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Figure 10. The left diagram shows the method of calculating the probability for the nu-
merator of the ratio for the modified coin flip algorithm, and the right diagram shows the
method of calculating the probability of the denominator.

Figure 11. The diagram on the left shows the method to calculate the probability of the
numerator for the generalized probability algorithm, and the diagram on the right shows
the method to calculate the probability of the denominator.

Since t is the total number of vehicles in the sub category and t will likely be large whereas n < t (or possibly
n � t), we expect ε to be large, and hence provides little or no guarantees about differential privacy. The
precise values here as well as studying how this modified RR depends on parameters in the algorithm is an
area for future study.

4.1.4. Random Response with weighted coin flips and multiple categories. Suppose we want to further gener-
alize the modified coin flip algorithm to have better control of the balance between privacy and data utility.
Suppose the probability that the truth is reported occurs with probability p (note: this corresponds to θ in
Section 3.3.1). The generalized diagram is shown in Figure 11. The ratio of probabilities is now

(11) max
j

{
Pr[R = cj | Truth = cj ]

Pr[R = cj | Truth = c′i]

}
= max

j

{
p+ (1− p)nj

t

(1− p) · nj

t

}
= max

j

{
pt+ (1− p)nj

(1− p)nj

}
=
pt+ (1− p)n

(1− p)n
Again where n is the minimum over all values nj . This situation gives an expression for differential privacy:

(12) ε = log

(
pt+ (1− p)n

(1− p)n

)
The benefit of this algorithm is that we have more control over ε than we did in the modified coin flip because
of the addition of p controlling the rate of reporting the truth. If p is large, then there is a high probability
that a person will report their true vehicle, and thus we expect there is less privacy. If p is small, then there
is a small probability that an individual reports their true vehicle, ε approaches 0, and differential privacy
guarantee is improved.

4.2. Differential Privacy analysis for trip data. Suppose we take n = n′ = 1 in (11). The resulting
algorithm corresponds to random response where one replies with his/her actual car with probability p, and
selected uniformly at random from a list of t cars with probability 1− p. Revisiting the derived DP bound,
asymptotically

(13) ε = log

[
tp+ 1− p

1− p

]
∼ log t,
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for t� 1. For fixed p, the value of ε grows as the size of the list grows. One could keep ε moderately small
by p near zero, but this produces a mostly synthetic data set that very inaccurately models the original.

Recall that the “Trips” data set records starting and finishing locations. Briefly, we propose to first
aggregate these start and finishing locations to one of about 2500 census blocks, as is seen in practice
(see Fig. 12)Then, we may consider another variation of the Random Response algorithm. Consider using

Figure 12. Division of Minneapolis/St. Paul Metropolitan area into about 2500 blocks
(left) and 19 counties (right).

randomized response to mask a database of two-stop trips by replacing them with a randomly generated pair
(i, j) with probability 1 − p. This method is qualitatively similar to perturbing the longitude and latitude
of the starting/finishing points and then aggregating them to blocks. Note that trips can be represented
as ordered integers (i, j) where i, j ∈ {1, 2, . . . , 2500} and there are 25002 distinct trips. With p = 1/2 and
t = 25002 in (13), we have

ε ≈ 16.

In practice, this estimate for ε is quite large. Trips with more stops will have even greater values of ε. The
intuition is that because the state space of trips is so large, entries are more “unique” than when the state
space is small. Removal of any one entry could drastically change the conclusions of any study performed
on this data set and therefore this approach to masking the trip data is not very differentially private.

5. Study of home location perturbation with synthetic census blocks.

In this study, the actual data is household location data and it is aggregated into census blocks which
are geographical regions whose populations are roughly the same. As one would expect there is a trade off
between amount of perturbation and accuracy of data. If only a small perturbation is applied to the data
before aggregation it is likely that the census block labels for each household remains unchanged. If a large
perturbation is applied to the data before aggregation it is likely that the census block labels are highly
inaccurate and useless. Therefore in practice one must tune the perturbation to the accuracy and protection
desired. It is for this reason that we studied the relationship between perturbation and accuracy.

As household locations in a census block can be thought of points sitting inside a polygon, accuracy can
be understood as the distribution of points in a particular polygon whose census block label changes after
perturbation. In this case we say the point escaped the polygon after perturbation. Therefore, we studied
the effects of data perturbation before aggregation on the household location-census block relationship.
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Currently data about household location is often associated with a census block, which is a region with
a population in a particular range. Though there is an R code that will associate latitude and longitude
coordinates with a census block, at first we chose to model a much simpler problem working on a simple
quasi-rectangular grid.

Figure 13. Example of household location data overlaid on uniform grid for N = 50. The
black diamonds represent the actual data; the blue dots represent the perturbed data.

We took the rectangular region enclosing all the household data points and subdivided it into a uniform
grid. The range in each direction was subdivided into N intervals, yielding N2 “blocks.” We started with
nearly 7400 household locations, and perturbed them using a technique similar to the Laplace mechanism
(7). Instead of using (7) for the radius of the perturbation, we used separate Laplace noise in the x- and
y-directions with parameters bx and by, where

(14) bx =
∆f (in the x-direction)

ε
,

and similarly for by. A visualization of the results is shown in Fig. 13.
To analyze the effects of this perturbation scheme, we performed ten different random realizations of

the perturbations, and then averaged the results. We did this for various values of the Laplace scales, and
computed the proportion of households that left their original block under perturbation. Results are shown
in Fig. 14, where the horizontal axis is log b̄, where b̄ is just the average of bx and by. As expected, for fixed
N , the larger the value of b̄ (and hence the larger the perturbation), the larger the proportion that left the
original block. Similarly, for fixed b̄, the larger the value of N (and hence the smaller the original block size),
the larger the proportion that left the original block.

These results, along with the form of (7), suggest a natural relationship between b̄ and N . In particular,
we expect that what is important is the ratio of the Laplace scale to the grid spacing, which behaves as
N−1. Hence in Fig. 15 we plot the same results as in Fig. 14, but with the horizontal axis equal to log(b̄N).
Note that the simulations now lie nearly on top of one another, indicating the appropriateness of the lumped
parameter. (Note also that at the upper end, the Laplace parameter is 100 times as large as the grid spacing,
which seems unrealistic.)

Another parameter of interest would be preservation of block population. In particular, given our previous
results, we know that after perturbation, households will move from block to block. Hence we would expect
some blocks to experience a net loss of households, some would have a net gain, and the population of some
blocks to remain the same. Since census blocks have roughly the same population and can be a useful way
to categorize data, it may be useful to maximize the proportion with no net change.

To analyze this situation, we used the algorithm described above to compute the proportion of blocks
that retained the same population. The results are shown in Fig. 16. As expected, for fixed N , the larger
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Figure 14. Comparison on proportion of locations perturbed outside the original block group.

Figure 15. Comparison of the proportion of perturbed points that left original block with
respect to the scaled parameter b̄N , where b̄ is the shape parameter of the Laplace distri-
bution and N is the grid size parameter.

the value of b̄ (and hence the larger the perturbation), the smaller the proportion of blocks with unchanged
population. Similarly, for fixed b̄, the larger the value of N (and hence the smaller the original block size),
the smaller the proportion of blocks with unchanged population.

To get more information about the distribution than just the proportion of blocks with unchanged popu-
lation, it would be interesting to create a histogram with the number of blocks vs. unsigned relative change
in population. However, we were unable to do this before the workshop ended.

Though the uniform grid is easy to analyze, the visualization in Fig. 13 shows a weakness of the model.
In particular, recall that the original census groups that we are trying to model contain roughly the same
overall population. But in the data at hand, the households are clustered around the center of the region,
as would be expected from a metropolitan area. (Also see left of Fig. 12.)

Hence we generalize our previous model by allowing the grid spacing in each direction to be nonuniform.
This still produces a regular grid of rectangles, but with different dimensions and areas. In particular,
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Figure 16. Comparison on proportion of blocks with no net change after perturbation.

Figure 17. Examples of household location data overlaid on nonuniform grid. Parameters
are as in Fig. 13.

we took an irregular spacing of x and y coordinates using a Gaussian distribution to describe the spacing
between each point, which produced smaller regions near the densely populated center; see Fig. 17. We would
expect that if we generated a histogram of the number of blocks by household population, the nonuniform
grid would produce a much more uniform distribution. However, the workshop ended before we had time to
investigate this more fully.

We repeated the analysis shown in Fig. 14 and obtained similar results, which are shown in Fig. 18. A
comparison of the uniform and non-uniform grids is shown in Fig. 19. As expected, since for fixed N the
nonuniform grid contains more blocks of a smaller size, it is easier to displace a household from its original
block, the curve for the nonuniform grid lies above the uniform case.

We also repeated the analysis shown in Fig. 16 and obtained similar results, which are shown in Fig. 20.
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Figure 18. Comparison on proportion of locations perturbed outside the original block group.

Figure 19. Comparison between uniform and nonuniform grids for N = 50.

Using the Matlab command inpolygon(), one can determine whether a given point is inside a given
polygon. Using the command we modeled the proportion of points that escaped a given polygon after
applying Gaussian noise. For demonstration purposes we studied this model with a pentagon inscribed in
the unit square but we must note that this model can be easily adapted to any polygon of any size, and
any probability distribution for the noise. In Figure 21 we model the relationship between the proportion
of escaped points and the variance of the perturbation. Note this simulation was run with 100 uniformly
distributed points inside a pentagon. We studied the case of 10 points and and 50 points and the result was
near identical. For each variance we output the average over 100 computations of the proportion of escaped
points.

We can also output the variance among these 100 computations to study how stable this procedure
is. Stability of this procedure of really important because it gives us probabilitic guarantees that our
computations are consistent.

So far we have discussed the relationship between the proportion of escaped points and variance in a
given polygon. This is a local analysis and we were also interested in studying the accuracy of the data after
perturbation over all census blocks. We note the following. If we have N census blocks each with population
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Figure 20. Comparison on proportion of blocks with no net change after perturbation,
nonuniform case.

Pi and the proportion of escaped points in census block i is ρi, then the proportion of escaped points over
the entire city population is

(15)

∑
i Piρi∑
i Pi

Therefore, since each census block has roughly the same population, we think of each Pi as roughly some
quantity P . If we have that each ρi is roughly some quantity ρ, then the proportion of escaped points over
the entire city population is roughly ρ. Having all the ρi roughly equal to some ρ is a very natural condition
since one would like that the accuracy is preserved uniformly in each census block.

This argument reduces the analysis over preserving accuracy globally across the city into an analysis of
the accuracy over each single census block or polygon.

In conclusion, with this approach one can determine the variance that provides a desired proportion
of escaped points (accuracy of data after perturbation); and with plots like Fig. 21 one can study this
relationship and empirically tune the noise that would provide the desired accuracy and privacy. However,
we have not established if, or how at what level, this approach provides differential privacy.

6. Recommendations and Future Work

We have explored various approaches extending the basic Random Response algorithm associated with
differential privacy working with categorical (as opposed to spatial) data. Here we provide recommendations
and detail potential algorithms which may be of use in the future.

6.1. Recommendations relating to categorical data. Below are some suggestions, primarily relating
to other algorithms published in the literature, for publishing trip data that may provide better differential
privacy guarantees.

• Publish the 10 most common destination blocks after addition of noise. This data set can be made
ε-DP by taking the following steps:
(1) Compute Ni, i = 1, . . . , 2500, the frequencies/counts of trips that end in each of the 2500 blocks.
(2) Add Laplace(1/ε) noise to each count:

Ñi = Ni + ηi, i = 1, 2, . . . , 2500,

where ηi ∼ Lap(1/ε).
(3) Publish the 10 largest values from {Ñ1, . . . , Ñ2500}.
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Figure 21. Relationship between proportion of escaped points and variance of perturbation

It has been shown [DR14] that the Laplace mechanism in steps 1 and 2 are ε-DP. The magnitude
of noise added depends on ε which may have to be large to keep the noise small. This will prevent
counts from becoming negative and to maintain accuracy.

• Publish randomized start at the county level for each trip (there are 19 of them – see Fig. 12). Using
randomized response with p = 1/2 and t = 192, we calculate ε ≈ 6 for two-stop trips, so this method
gives a better bound than applying similar methods at the county-block level.

• Adapt the SSD (“Sampling Distance and Direction”) method from [JSB+13] which would process
longitude/latitude measurements (xi, yi) from the original data. The method would allow the pub-
lication of a single, ε-differentially private trip of the form

(16) {(x0, y0), (x̃1, ỹ1), . . . , (x̃n, ỹn), (xn+1, yn+1)}.

Note that the start and end positions are not perturbed in this version of SSD. Assuming that the
distance between any two consecutive stops does not exceed M , SSD randomizes the trip in the
following way:
(1) Let x̃0 = x0, ỹ0 = y0, x̃n+1 = xn+1, ỹn+1 = yn+1 (start and end positions are not perturbed)
(2) For i = 1, 2, . . . , n:
(3) Let vi = (xi − x̃i−1, yi − ỹi−1).
(4) Compute ri = ||vi|| and θi = arg(vi) (angle of vi).
(5) While ||(x̃i, ỹi)− (xn+1, yn+1)|| ≥ (n+ 1− i)M :

(a) Sample ρi ∈ [0,M ] and αi ∈ [0, 2π] with

Prob(ρi) ∼ exp (−ε|ρi − ri|/(8M)) ,

Prob(αi) ∼ exp (−ε|αi − θi|/(8π)) .

(b) Let x̃i+1 = x̃i + ρi cosαi and ỹi+1 = ỹi + ρi cosαi.
The value of ε in the algorithm can be tuned: smaller ε corresponds to more noise, more privacy but
less accuracy. This trade-off between accuracy and privacy is typical in most problems.
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6.2. Live travel perturbation. When considering spatial data, we have primarily focused on the beginning
and end of a trip – but it may be important to also know precise routes. This information was included in
the data provided, but we concluded after much discussion that this was too challenging to handle during the
time span of the workshop. Figure 22 illustrates a first attempt at such perturbation. However, investigating
notions of differential privacy at such fine granularity, as is producing realistic, synthetic data (which is a
persistent problem underlying the Random Replacement algorithm for complex data) and could be the
subject of its own project.

Figure 22. Trips latitude(lat) perturbed versus longitude (lon) perturbed.

6.3. A bare-bones example illustrating a randomized selection of “to” and “from” locations.
Here we describe the details of a potential location perturbation algorithm which may be applied to the
“Trips” data set.

6.3.1. The simplest case: “to” and “from” locations are independent. We assume that:

(1) The company (RSG) has true statistics (histograms) of how many households (HHs) travel from and
to specific locations.

(2) The locations are coded as the census blocks (in what follows, just “Blocks”) where they lie in.
Therefore, the true histograms

(17) htfrom(i) and htto(i), 1 ≤ i ≤ N,

are assumed to be known; here i is the index of the Block and N is the total number of Blocks. The
notations ‘htfrom’ and ‘htto’ stand for ‘histogram–true–from’ and ‘histogram–true–to’, respectively.

(3) The company needs to report trips in a way that (approximately) preserves the individual histograms
in (17). For example, it will report that HH α has taken a trip from Block i to Block j in such a
way that the reported histograms

(18) hrfrom(i) and hrto(j) 1 ≤ i, j ≤ N,

are (approximately) the same as the true histograms htfrom and htto. Here the ‘r’ in the notations
hrfrom and hrto stands for ‘reported’. Also, we will enumerate Blocks with Latin letters and HHs
with Greek letters.

(4) In this subsection, we assume that the histograms for trips ‘from’ and ‘to’ Blocks are independent.
I.e., one is interested only in these two statistics and is not interested in any statistics derived from
them, e.g., in the number of miles traveled. The more complicated case when one is interested also
in a derived statistics (e.g., that of total miles traveled), is considered in the next subsection.

Then the proposed randomized process of the location (i.e., Block) selection is as follows.
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Step 1 For the first trip (during the day, or in a given report), and for each HHα with 1 ≤ α ≤ M (where
M is the number of HHs), do:

– With probability p, report the true “from” Block;
– With probability (1 − p), report a Block whose number is taken according to the probability

distribution dictated by the histogram htfrom.
Example: Suppose that N = 5 (five Blocks) and that

(19) htfrom = [15, 10, 25, 5, 20].

Then (in this sub-step of Step 1) the company will report that HHα has taken its trip from:
∗ Block 1 — with probability 15/(15 + 10 + 25 + 5 + 20) = 15/75;
∗ Block 2 — with probability 10/75;
∗ Block 3 — with probability 25/75;
∗ Block 4 — with probability 5/75;
∗ Block 5 — with probability 20/75.

Note 1: The are standard built-in algorithms of how one can draw entry i from a given probability
distribution.
Note 2: There is no need to reconcile the “from” locations at this Step with anything from the
previous trips, since this is assumed to be the first trip in a given report. Step 3 below will handle
the issue of connection between two “adjacent” trips.
Note 3: It may be a good idea to update the histogram used for each α (the index of the HH) based
on the drawings of the “from” Blocks by the HHs before the HHα. Here is an Example. Suppose
that for HH1, the reported “from” Block is Block 2. (It does not matter whether this reported Block
is the true or made-up one.) Now, for HH2, the histogram to use will be:

(20) htfrom = [15, 9 , 25, 5, 20],

where the change compared to (19) is underlined. Then, if for HH2 the reported Block ends up being
Block 5, then for HH3 one would use the histogram

(21) htfrom = [15, 9, 25, 5, 19 ],

and so on.
Note 4: As was mentioned during the group discussions and also during the final presentation, it
makes sense to use p close to 1 (i.e., near-true reporting) for Blocks that contain many HHs, but use
a smaller p (i.e., more distorted reporting) for Blocks that are sparsely represented in the survey.

Step 2 Following exactly the same procedure, but using htto instead of htfrom, report the Block where HHα

traveled to in their trip 1.
Step 3 For trip 2, it is assumed that its origin must coincide with the destination of trip 1 for each HH.

Thus, there is no selection needed at this Step.
Note: If the above assumption is not made, then Step 3 repeats Step 1, where the histogram needs
to be that updated after all ‘trip 1’s by all HHs, as illustrated in the Example in Note 3 of Step 1.

Step 4 Repeat Step 2 using the updated histogram htto, similarly to what is said in the Note for Step 3.

6.3.2. Two more complex variations of the the simplest case.
Reporting the joint histogram of Blocks traveled ‘from’ and ‘to’. Suppose that the company needs its report
to satisfy not only the two individual histograms as in the Simplest Case, but also satisfy (approximately,
of course) the joint histogram

(22) ht from− to(i, j),

where ‘i’ and ‘j’ are the Block’s numbers that HHs travel ‘from’ and ‘to’, respectively. An example of such
a joint histogram would be a matrix:

(23) htfrom−to =


5 2 4 3 1
1 2 2 1 3
5 6 2 8 4
0 1 1 1 2
4 3 4 2 7

 .
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Here the entry (i, j) is the number of trips taken from Block i to Block j by all HHs combined. For example,
there is a total of 8 trips from Block 3 to Block 4. Note that the numbers in the columns for each row add
up to the numbers one finds in (19). Then the process of selecting Blocks to report uses the same conceptual
Steps as in Section 6.3.1, but with different histograms in some of the Steps.

Specifically:

• The histogram in Step 1 remains unchanged. Note that, as mentioned a few lines above, htfrom(i) =∑N
j=1 htfrom−to(i, j).

• In Step 2, suppose that HHα was reported to start from Block s. Then one needs to use

(24) htto(j) = htfrom−to(s, j)

For example, if s = 4, then for the example given by (23), one has htto = [0, 1, 1, 1, 2].
• Step 3 is the same as that in Section 6.3.1.
• For Step 4, proceed using the updated histogram htto computed from htfrom−to as shown in (24).

Reporting the individual “from” and “to” histograms and the histogram for traveled distances. This is
actually a special case of that considered in the previous subsection. Indeed, if one preserves the histogram
of the relation how often someone travels from Block i to Block j, then one automatically preserves the
histogram of traveled distances.

6.3.3. What needs to be investigated further in this approach. The first two of the suggestions listed below
and addressing the question in the title of this subsection are fairly obvious; the third one is probably less
so.

• How does parameter p (in Step 1 in Section 6.3.1) affect both privacy and utility of the data reported
according to the approach proposed above? How does this depend on the size of the survey?

• Is there a (probably empirical) rule on how p should depend on the size of the Block to which it
applies? (This may (?) also depend on the relation between the sizes of the “from” and “to” Blocks
for which a given trip is reported.)

• The company may also want to be concerned about the plausibility of the reported trips, where the
term ‘plausibility’ is explained by the following
Example: Suppose that the adversary has a means to detect, and then filter out, outliers in the
reported statistics. Such outliers may well come from the made-up trip data. If the adversary
ignores them, then he/she/they can obtain a more truthful statistics and from it can infer the
target.
The ways to counteract this are two:

– Make the made-up trips appear more like true ones (for example, in terms of being a closer
match of the trip destinations);
and

– Create more made-up trips in such a way that it would make outliers no longer look like outliers
and hence will make it harder for the adversary to detect. (This latter method is, of course,
well-known from the “Ali Baba and the Forty Thieves” folktale.)

The question of how these methods could be implemented remains open, to the knowledge of the
author of these notes.

7. Author Contributions

• MAA advised the various sub-groups during the workshop and produced visualizations of the MSP
area.

• PWF wrote the section on DP Analysis for Trip Data.
• DAE assisted BE with the code used in the rectangular-block work of the Home Location Pertur-

bation section. He also wrote the algorithm that computed the proportion of blocks with no net
gain/loss.

• LDG wrote a portion of the Data Collection section and Differential Privacy section, and worked on
and wrote parts of the modified coin flip algorithm and the generalized probability algorithm.

• SKD wrote the subsection Graphical use of sharing differentially private information, under the
section, Data Analysis. Helped create using SAS the Figure 9.
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• GK contributed to the edits and literature review of the Background section and discussions on
perturbation and aggregation simulations.

• ASC suggested some initial readings on the topic of differential privacy, helped with the litera-
ture review, and offered advice on implementation and limits of differential privacy throughout the
workshop, but did not contribute to the report.

• YS contributed to the edits and took part in discussion of the basics of differential privacy and
coin-flip examples.

• ZS, SW and LY wrote code to visualise: trip information such as: frequency, trajectories and
destination distribution. Also took part in discussion of making categorical data differentially private.

• TAD produced data summaries, participated in discussions about and explorations of the im-
plications of DP for location data, and assisted with the use of the coin-flip algorithm on car
makes/models.

• CRM developed model for studying effects of perturbation before aggregation of data points in
general polygons.

• EG wrote code in R to implement the modified coin flip algorithm to perturb vehicle makes and
models, and assisted in writing and editing section 4.1.

• TL provided details of a potential location replacement algorithm in the Future Work.
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